← Back to linear algebra 1

One-to-One and Onto Transformations

Two fundamental properties of transformations are whether they are one-to-one (injective) and onto (surjective). For linear transformations, these properties can be determined from the pivot structure of the standard matrix.

One-to-One Transformations

Definition (One-to-One):
A transformation T:RnRmT: \mathbb{R}^n \to \mathbb{R}^m is one-to-one (or injective) if: T(x1)=T(x2)    x1=x2T(\vec{x}_1) = T(\vec{x}_2) \implies \vec{x}_1 = \vec{x}_2

Equivalently: Different inputs produce different outputs.

Geometric intuition: No two distinct vectors map to the same output—the transformation doesn't "collapse" any information.

Example 1: One-to-One Transformation

Let T:R2R3T: \mathbb{R}^2 \to \mathbb{R}^3 be defined by T[xy]=[xyx+y]T\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ y \\ x + y \end{bmatrix}.

Standard matrix: A=[100111]A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}

Is this one-to-one? Suppose T(x1)=T(x2)T(\vec{x}_1) = T(\vec{x}_2): [x1y1x1+y1]=[x2y2x2+y2]\begin{bmatrix} x_1 \\ y_1 \\ x_1 + y_1 \end{bmatrix} = \begin{bmatrix} x_2 \\ y_2 \\ x_2 + y_2 \end{bmatrix}

From first two components: x1=x2x_1 = x_2 and y1=y2y_1 = y_2. Thus x1=x2\vec{x}_1 = \vec{x}_2.

Answer: Yes, TT is one-to-one.

Example 2: Not One-to-One

Let T:R2R2T: \mathbb{R}^2 \to \mathbb{R}^2 be projection onto the xx-axis: T[xy]=[x0]T\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ 0 \end{bmatrix}.

Standard matrix: A=[1000]A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}

Is this one-to-one? Consider: T[12]=[10]=T[15]T\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = T\begin{bmatrix} 1 \\ 5 \end{bmatrix}

Different inputs give the same output!

Answer: No, TT is not one-to-one.


One-to-One Test via Homogeneous Equations

Theorem (One-to-One Test):
A linear transformation T:RnRmT: \mathbb{R}^n \to \mathbb{R}^m with standard matrix AA is one-to-one if and only if: Ax=0 has only the trivial solutionA\vec{x} = \vec{0} \text{ has only the trivial solution}

Proof:

The columns of AA are linearly independent if and only if Ax=0A\vec{x} = \vec{0} has only the trivial solution.

Therefore: TT is one-to-one \Leftrightarrow columns of AA are linearly independent.

This makes sense geometrically: if the columns are dependent, multiple input combinations produce the same output.


One-to-One and Pivot Columns

Theorem (Pivot Column Criterion for One-to-One):
Let T:RnRmT: \mathbb{R}^n \to \mathbb{R}^m have standard matrix AA. Then TT is one-to-one if and only if: Every column of AA is a pivot column.

Why?

Example 3: Testing One-to-One

Determine if T:R3R3T: \mathbb{R}^3 \to \mathbb{R}^3 with standard matrix A=[123014000]A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 0 \end{bmatrix} is one-to-one.

Solution: Row reduce to find pivot columns (already in echelon form):

Since not every column is a pivot column, TT is not one-to-one.

Verification: The homogeneous system Ax=0A\vec{x} = \vec{0} has nontrivial solutions (column 3 is free).

Example 4: One-to-One Transformation

Is T:R2R3T: \mathbb{R}^2 \to \mathbb{R}^3 with A=[123456]A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} one-to-one?

Testing One-to-One

Step 0 of 3

Both columns are pivot columns!

Answer: Yes, TT is one-to-one.


Onto Transformations

Definition (Onto):
A transformation T:RnRmT: \mathbb{R}^n \to \mathbb{R}^m is onto (or surjective) if: For every b\vec{b} in Rm\mathbb{R}^m, there exists x\vec{x} in Rn\mathbb{R}^n such that T(x)=bT(\vec{x}) = \vec{b}.

Equivalently: The range (image) of TT is all of Rm\mathbb{R}^m.

Geometric intuition: Every possible output is achieved—the transformation "reaches" all of the target space.

Example 5: Onto Transformation

Let T:R3R2T: \mathbb{R}^3 \to \mathbb{R}^2 be defined by T[xyz]=[x+yy+z]T\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x + y \\ y + z \end{bmatrix}.

Is this onto? For any b=[ab]\vec{b} = \begin{bmatrix} a \\ b \end{bmatrix}, can we find x\vec{x}?

Choose x=a,y=0,z=bx = a, y = 0, z = b: T[a0b]=[a+00+b]=[ab]T\begin{bmatrix} a \\ 0 \\ b \end{bmatrix} = \begin{bmatrix} a + 0 \\ 0 + b \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix}

For any target [ab]\begin{bmatrix} a \\ b \end{bmatrix}, we found an input!

Answer: Yes, TT is onto.

Example 6: Not Onto

Let T:R2R3T: \mathbb{R}^2 \to \mathbb{R}^3 be T[xy]=[xy0]T\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ y \\ 0 \end{bmatrix}.

Is this onto? Can we reach [001]\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}?

We'd need: [xy0]=[001]\begin{bmatrix} x \\ y \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}

But the third component is always 0, never 1!

Answer: No, TT is not onto. The range is only the xyxy-plane in R3\mathbb{R}^3.


Onto Test via Span

Theorem (Onto Test):
A linear transformation T:RnRmT: \mathbb{R}^n \to \mathbb{R}^m with standard matrix A=[a1a2an]A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \cdots & \vec{a}_n \end{bmatrix} is onto if and only if: Span{a1,a2,,an}=Rm\text{Span}\{\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_n\} = \mathbb{R}^m

Equivalently: The columns of AA span Rm\mathbb{R}^m.

Why? For any bRm\vec{b} \in \mathbb{R}^m, we need b=Ax\vec{b} = A\vec{x} for some x\vec{x}. But AxA\vec{x} is a linear combination of the columns, so this is possible if and only if b\vec{b} is in the span of the columns.


Onto and Pivot Rows

Theorem (Pivot Row Criterion for Onto):
Let T:RnRmT: \mathbb{R}^n \to \mathbb{R}^m have standard matrix AA. Then TT is onto if and only if: Every row of AA has a pivot (equivalently: AA has mm pivot rows).

Why?

Example 7: Testing Onto

Determine if T:R3R2T: \mathbb{R}^3 \to \mathbb{R}^2 with A=[123014]A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \end{bmatrix} is onto.

Solution: Count pivot rows (already in echelon form):

Answer: Yes, TT is onto.

Example 8: Not Onto

Is T:R2R3T: \mathbb{R}^2 \to \mathbb{R}^3 with A=[123612]A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \\ 1 & 2 \end{bmatrix} onto?

Testing Onto

Step 0 of 2

Only 1 pivot row, but m=3m = 3 rows.

Answer: No, TT is not onto. The range is only 1-dimensional (a line in R3\mathbb{R}^3).


Summary Table


Practice Problems

Determine if T:R3R2T: \mathbb{R}^3 \to \mathbb{R}^2 with standard matrix A=[102013]A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \end{bmatrix} is one-to-one.

Check if every column is a pivot column.

The matrix is already in RREF:

  • Pivot columns: 1 and 2
  • Column 3 is not a pivot column (no pivot in that column)

Not every column is a pivot column.

Answer: No, TT is not one-to-one.

Verification: Ax=0A\vec{x} = \vec{0} has nontrivial solutions (with x3x_3 free).

Is T:R3R2T: \mathbb{R}^3 \to \mathbb{R}^2 with A=[102013]A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \end{bmatrix} onto?

Check if every row has a pivot.

  • Row 1 has pivot (in column 1)
  • Row 2 has pivot (in column 2)
  • Total pivot rows: 2 = mm (number of rows)

Every row has a pivot!

Answer: Yes, TT is onto.

Can a linear transformation T:R2R3T: \mathbb{R}^2 \to \mathbb{R}^3 be both one-to-one and onto?

Think about the number of pivot columns and pivot rows needed.

For T:R2R3T: \mathbb{R}^2 \to \mathbb{R}^3:

  • One-to-one requires: 2 pivot columns (every column a pivot)
  • Onto requires: 3 pivot rows (every row has a pivot)

But a 3×23 \times 2 matrix can have at most 2 pivot columns, which means at most 2 pivot rows (not 3).

Answer: No, it's impossible for T:R2R3T: \mathbb{R}^2 \to \mathbb{R}^3 to be both one-to-one and onto.

General principle: For T:RnRmT: \mathbb{R}^n \to \mathbb{R}^m to be both one-to-one and onto, we need n=mn = m.

Give an example of a linear transformation T:R3R2T: \mathbb{R}^3 \to \mathbb{R}^2 that is:

  1. One-to-one but not onto
  2. Onto but not one-to-one
  3. Neither one-to-one nor onto

Use the pivot criteria to construct appropriate matrices.

1. One-to-one but not onto: Impossible for T:R3R2T: \mathbb{R}^3 \to \mathbb{R}^2!

  • One-to-one needs 3 pivot columns
  • A 2×32 \times 3 matrix can have at most 2 pivot rows
  • If there are 3 pivot columns, there must be at least 3 pivots, but we only have 2 rows
  • So we can't have 3 pivot columns in a 2×32 \times 3 matrix

2. Onto but not one-to-one: A=[101011]A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}

  • 2 pivot rows (onto ✓)
  • Only 2 pivot columns out of 3 (not one-to-one ✓)

3. Neither: A=[123246]A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \end{bmatrix} Row reduces to: [123000]\begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \end{bmatrix}

  • Only 1 pivot row (not onto ✗)
  • Only 1 pivot column (not one-to-one ✗)

Summary